Generalized packing designs
نویسندگان
چکیده
Generalized t-designs, which form a common generalization of objects such as tdesigns, resolvable designs and orthogonal arrays, were defined by Cameron [P.J. Cameron, A generalisation of t-designs, Discrete Math. 309 (2009), 4835–4842]. In this paper, we define a related class of combinatorial designs which simultaneously generalize packing designs and packing arrays. We describe the sometimes surprising connections which these generalized designs have with various known classes of combinatorial designs, including Howell designs, partial Latin squares and several classes of triple systems, and also concepts such as resolvability and block colouring of ordinary designs and packings, and orthogonal resolutions and colourings. Moreover, we derive bounds on the size of a generalized packing design and construct optimal generalized packings in certain cases. In particular, we provide methods for constructing maximum generalized packings with t = 2 and block size k = 3 or 4.
منابع مشابه
Invited Talks
In 2009, Peter Cameron introduced a common generalization of various classes of combinatorial designs such as balanced incomplete block designs, resolvable designs and orthogonal arrays. Generalized covering and packing designs can be defined in analogous way. These objects bring into this framework further classes of designs, including covering and packing arrays, Howell designs, monogamous cy...
متن کاملGeneralized Resolution and Minimum Aberration for Nonregular Fractional Factorial Designs
Seeking the optimal design with a given number of runs is a main problem in fractional factorial designs(FFDs). Resolution of a design is the most widely usage criterion, which is introduced by Box and Hunter(1961), used to be employed to regular FFDs. The resolution criterion is extended to non-regular FFG, called the generalized resolution criterion. This criterion is providing the idea of ge...
متن کاملTransitive Packing
This paper is intended to give a concise understanding of the facial structure of previously separately investigated polyhedra. It introduces the notion of transitive packing and the transitive packing polytope and gives cutting plane proofs for huge classes of valid inequalities of this polytope. We introduce generalized cycle, generalized clique, generalized antihole, generalized antiweb, gen...
متن کاملTransitive Packing: A Unifying Concept in Combinatorial Optimization
This paper attempts to provide a better understanding of the facial structure of polyhedra previously investigated separately. It introduces the notion of transitive packing and the transitive packing polytope. Polytopes that turn out to be special cases of the transitive packing polytope include the node packing, acyclic subdigraph, bipartite subgraph, planar subgraph, clique partitioning, par...
متن کاملOn Kirkman packing designs KPD({3, 4}, v)
A Kirkman packing design KPD({3; 4∗∗}; v), is a resolvable packing of a v-set by the maximum possible number of parallel classes, each containing two blocks of size 4 and all other blocks of size three. Such designs can be used to construct certain threshold schemes. In this paper, direct and recursive constructions are discussed for such designs. The existence of a KPD({3; 4∗∗}; v) is establis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 313 شماره
صفحات -
تاریخ انتشار 2013